MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdmultiple Structured version   Visualization version   GIF version

Theorem gcdmultiple 15492
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiple ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6823 . . . . . 6 (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1))
21oveq2d 6831 . . . . 5 (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1)))
32eqeq1d 2763 . . . 4 (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀))
43imbi2d 329 . . 3 (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)))
5 oveq2 6823 . . . . . 6 (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛))
65oveq2d 6831 . . . . 5 (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛)))
76eqeq1d 2763 . . . 4 (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))
87imbi2d 329 . . 3 (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)))
9 oveq2 6823 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1)))
109oveq2d 6831 . . . . 5 (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
1110eqeq1d 2763 . . . 4 (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
1211imbi2d 329 . . 3 (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
13 oveq2 6823 . . . . . 6 (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁))
1413oveq2d 6831 . . . . 5 (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁)))
1514eqeq1d 2763 . . . 4 (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
1615imbi2d 329 . . 3 (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)))
17 nncn 11241 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
1817mulid1d 10270 . . . . 5 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
1918oveq2d 6831 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀))
20 nnz 11612 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21 gcdid 15471 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2220, 21syl 17 . . . . 5 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀))
23 nnre 11240 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
24 nnnn0 11512 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
2524nn0ge0d 11567 . . . . . 6 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2623, 25absidd 14381 . . . . 5 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2722, 26eqtrd 2795 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀)
2819, 27eqtrd 2795 . . 3 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)
2920adantr 472 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
30 nnz 11612 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
31 zmulcl 11639 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ)
3220, 30, 31syl2an 495 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ)
33 1z 11620 . . . . . . . . . 10 1 ∈ ℤ
34 gcdaddm 15469 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3533, 34mp3an1 1560 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3629, 32, 35syl2anc 696 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
37 nncn 11241 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 10207 . . . . . . . . . . . 12 1 ∈ ℂ
39 adddi 10238 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
4038, 39mp3an3 1562 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
41 mulcom 10235 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4238, 41mpan2 709 . . . . . . . . . . . . 13 (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀))
4342adantr 472 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4443oveq2d 6831 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4540, 44eqtrd 2795 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4617, 37, 45syl2an 495 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4746oveq2d 6831 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
4836, 47eqtr4d 2798 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
4948eqeq1d 2763 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5049biimpd 219 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5150expcom 450 . . . 4 (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
5251a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
534, 8, 12, 16, 28, 52nnind 11251 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
5453impcom 445 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  cfv 6050  (class class class)co 6815  cc 10147  1c1 10150   + caddc 10152   · cmul 10154  cn 11233  cz 11590  abscabs 14194   gcd cgcd 15439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-dvds 15204  df-gcd 15440
This theorem is referenced by:  gcdmultiplez  15493  rpmulgcd  15498
  Copyright terms: Public domain W3C validator