![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcddvds | Structured version Visualization version GIF version |
Description: The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcddvds | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11580 | . . . . . 6 ⊢ 0 ∈ ℤ | |
2 | dvds0 15199 | . . . . . 6 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∥ 0 |
4 | breq2 4808 | . . . . . . 7 ⊢ (𝑀 = 0 → (0 ∥ 𝑀 ↔ 0 ∥ 0)) | |
5 | breq2 4808 | . . . . . . 7 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
6 | 4, 5 | bi2anan9 953 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ (0 ∥ 0 ∧ 0 ∥ 0))) |
7 | anidm 679 | . . . . . 6 ⊢ ((0 ∥ 0 ∧ 0 ∥ 0) ↔ 0 ∥ 0) | |
8 | 6, 7 | syl6bb 276 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ 0 ∥ 0)) |
9 | 3, 8 | mpbiri 248 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) |
10 | oveq12 6822 | . . . . . . 7 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0)) | |
11 | gcd0val 15421 | . . . . . . 7 ⊢ (0 gcd 0) = 0 | |
12 | 10, 11 | syl6eq 2810 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = 0) |
13 | 12 | breq1d 4814 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
14 | 12 | breq1d 4814 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
15 | 13, 14 | anbi12d 749 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))) |
16 | 9, 15 | mpbird 247 | . . 3 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
17 | 16 | adantl 473 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
18 | eqid 2760 | . . . . 5 ⊢ {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛 ∥ 𝑧} = {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛 ∥ 𝑧} | |
19 | eqid 2760 | . . . . 5 ⊢ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} | |
20 | 18, 19 | gcdcllem3 15425 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∈ ℕ ∧ (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )))) |
21 | 20 | simp2d 1138 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁)) |
22 | gcdn0val 15422 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | |
23 | 22 | breq1d 4814 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀)) |
24 | 22 | breq1d 4814 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁)) |
25 | 23, 24 | anbi12d 749 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁))) |
26 | 21, 25 | mpbird 247 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
27 | 17, 26 | pm2.61dan 867 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 {cpr 4323 class class class wbr 4804 (class class class)co 6813 supcsup 8511 ℝcr 10127 0cc0 10128 < clt 10266 ≤ cle 10267 ℕcn 11212 ℤcz 11569 ∥ cdvds 15182 gcd cgcd 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-gcd 15419 |
This theorem is referenced by: zeqzmulgcd 15434 divgcdz 15435 divgcdnn 15438 gcd0id 15442 gcdneg 15445 gcdaddmlem 15447 gcd1 15451 bezoutlem4 15461 dvdsgcdb 15464 dfgcd2 15465 mulgcd 15467 gcdzeq 15473 dvdsmulgcd 15476 sqgcd 15480 dvdssqlem 15481 bezoutr 15483 gcddvdslcm 15517 lcmgcdlem 15521 lcmgcdeq 15527 coprmgcdb 15564 mulgcddvds 15571 rpmulgcd2 15572 qredeu 15574 rpdvds 15576 divgcdcoprm0 15581 divgcdodd 15624 coprm 15625 rpexp 15634 divnumden 15658 phimullem 15686 hashgcdlem 15695 hashgcdeq 15696 phisum 15697 pythagtriplem4 15726 pythagtriplem19 15740 pcgcd1 15783 pc2dvds 15785 pockthlem 15811 odmulg 18173 odadd1 18451 odadd2 18452 znunit 20114 znrrg 20116 dvdsmulf1o 25119 2sqlem8 25350 2sqcoprm 29956 qqhval2lem 30334 goldbachthlem2 41968 divgcdoddALTV 42103 |
Copyright terms: Public domain | W3C validator |