MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddm Structured version   Visualization version   GIF version

Theorem gcdaddm 15454
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 oveq1 6800 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝐾 · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀))
21oveq1d 6808 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝐾 · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))
32oveq2d 6809 . . . 4 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)))
43eqeq2d 2781 . . 3 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ (𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁))))
5 oveq1 6800 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁))
6 id 22 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
7 oveq2 6801 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) = (if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)))
87oveq1d 6808 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))
96, 8oveq12d 6811 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)))
105, 9eqeq12d 2786 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · 𝑀) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁))))
11 oveq2 6801 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)))
12 oveq2 6801 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁) = ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
1312oveq2d 6809 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0))))
1411, 13eqeq12d 2786 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 0) → ((if(𝑀 ∈ ℤ, 𝑀, 0) gcd 𝑁) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + 𝑁)) ↔ (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))))
15 0z 11590 . . . . 5 0 ∈ ℤ
1615elimel 4289 . . . 4 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1715elimel 4289 . . . 4 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1815elimel 4289 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 0) ∈ ℤ
1916, 17, 18gcdaddmlem 15453 . . 3 (if(𝑀 ∈ ℤ, 𝑀, 0) gcd if(𝑁 ∈ ℤ, 𝑁, 0)) = (if(𝑀 ∈ ℤ, 𝑀, 0) gcd ((if(𝐾 ∈ ℤ, 𝐾, 0) · if(𝑀 ∈ ℤ, 𝑀, 0)) + if(𝑁 ∈ ℤ, 𝑁, 0)))
204, 10, 14, 19dedth3h 4280 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
21 zcn 11584 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 zcn 11584 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
23 mulcl 10222 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · 𝑀) ∈ ℂ)
2421, 22, 23syl2an 583 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
25 zcn 11584 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
26 addcom 10424 . . . . 5 (((𝐾 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2724, 25, 26syl2an 583 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
28273impa 1100 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
2928oveq2d 6809 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
3020, 29eqtrd 2805 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  ifcif 4225  (class class class)co 6793  cc 10136  0cc0 10138   + caddc 10141   · cmul 10143  cz 11579   gcd cgcd 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425
This theorem is referenced by:  gcdadd  15455  gcdid  15456  modgcd  15461  gcdmultiple  15477  pythagtriplem4  15731  gcdi  15984  pgpfac1lem2  18682
  Copyright terms: Public domain W3C validator