MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdabs Structured version   Visualization version   GIF version

Theorem gcdabs 15457
Description: The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdabs ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))

Proof of Theorem gcdabs
StepHypRef Expression
1 zre 11582 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11582 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 absor 14247 . . . 4 (𝑀 ∈ ℝ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀))
4 absor 14247 . . . 4 (𝑁 ∈ ℝ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
53, 4anim12i 592 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
61, 2, 5syl2an 575 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
7 oveq12 6801 . . . 4 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
87a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
9 oveq12 6801 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd 𝑁))
10 neggcd 15451 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁))
119, 10sylan9eqr 2826 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1211ex 397 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
13 oveq12 6801 . . . . 5 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd -𝑁))
14 gcdneg 15450 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
1513, 14sylan9eqr 2826 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1615ex 397 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
17 oveq12 6801 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd -𝑁))
18 znegcl 11613 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
19 gcdneg 15450 . . . . . . 7 ((-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2018, 19sylan 561 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2120, 10eqtrd 2804 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
2217, 21sylan9eqr 2826 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
2322ex 397 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
248, 12, 16, 23ccased 1023 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
256, 24mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 826   = wceq 1630  wcel 2144  cfv 6031  (class class class)co 6792  cr 10136  -cneg 10468  cz 11578  abscabs 14181   gcd cgcd 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424
This theorem is referenced by:  absmulgcd  15473  lcmgcd  15527  lcmgcdeq  15532  zgcdsq  15667  lgsne0  25280
  Copyright terms: Public domain W3C validator