![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcd1 | Structured version Visualization version GIF version |
Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
gcd1 | ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11608 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | gcddvds 15432 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1)) | |
3 | 1, 2 | mpan2 663 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1)) |
4 | 3 | simprd 477 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∥ 1) |
5 | ax-1ne0 10206 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
6 | simpr 471 | . . . . . . . . 9 ⊢ ((𝑀 = 0 ∧ 1 = 0) → 1 = 0) | |
7 | 6 | necon3ai 2967 | . . . . . . . 8 ⊢ (1 ≠ 0 → ¬ (𝑀 = 0 ∧ 1 = 0)) |
8 | 5, 7 | ax-mp 5 | . . . . . . 7 ⊢ ¬ (𝑀 = 0 ∧ 1 = 0) |
9 | gcdn0cl 15431 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 1 = 0)) → (𝑀 gcd 1) ∈ ℕ) | |
10 | 8, 9 | mpan2 663 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 gcd 1) ∈ ℕ) |
11 | 1, 10 | mpan2 663 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℕ) |
12 | 11 | nnzd 11682 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℤ) |
13 | 1nn 11232 | . . . 4 ⊢ 1 ∈ ℕ | |
14 | dvdsle 15240 | . . . 4 ⊢ (((𝑀 gcd 1) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1)) | |
15 | 12, 13, 14 | sylancl 566 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1)) |
16 | 4, 15 | mpd 15 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ≤ 1) |
17 | nnle1eq1 11249 | . . 3 ⊢ ((𝑀 gcd 1) ∈ ℕ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1)) | |
18 | 11, 17 | syl 17 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1)) |
19 | 16, 18 | mpbid 222 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 (class class class)co 6792 0cc0 10137 1c1 10138 ≤ cle 10276 ℕcn 11221 ℤcz 11578 ∥ cdvds 15188 gcd cgcd 15423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-dvds 15189 df-gcd 15424 |
This theorem is referenced by: 1gcd 15461 lcm1 15530 dfphi2 15685 pockthlem 15815 fvprmselgcd1 15955 odinv 18184 pgpfac1lem2 18681 lgs1 25286 lgsquad2lem2 25330 2sqlem11 25374 qqh1 30363 |
Copyright terms: Public domain | W3C validator |