MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem2 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem2 25312
Description: Lemma 2 for gausslemma2d 25319. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem2 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
21a1i 11 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
3 oveq1 6821 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
43breq1d 4814 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
53oveq2d 6830 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
64, 3, 5ifbieq12d 4257 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
76adantl 473 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
8 elfz1b 12622 . . . . . . . 8 (𝑘 ∈ (1...𝑀) ↔ (𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀))
9 nnre 11239 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
109adantr 472 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑘 ∈ ℝ)
11 nnre 11239 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1211adantl 473 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
13 2re 11302 . . . . . . . . . . . . 13 2 ∈ ℝ
14 2pos 11324 . . . . . . . . . . . . 13 0 < 2
1513, 14pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
1615a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
17 lemul1 11087 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
1810, 12, 16, 17syl3anc 1477 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
19 gausslemma2d.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℙ ∖ {2}))
20 gausslemma2d.m . . . . . . . . . . . . . . 15 𝑀 = (⌊‘(𝑃 / 4))
2119, 20gausslemma2dlem0e 25305 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 2) < (𝑃 / 2))
2221adantl 473 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (𝑀 · 2) < (𝑃 / 2))
2313a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ∈ ℝ)
249, 23remulcld 10282 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 · 2) ∈ ℝ)
2524adantr 472 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
2613a1i 11 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 2 ∈ ℝ)
2711, 26remulcld 10282 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 · 2) ∈ ℝ)
2827adantl 473 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 · 2) ∈ ℝ)
2919gausslemma2dlem0a 25301 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
3029nnred 11247 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
3130rehalfcld 11491 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 / 2) ∈ ℝ)
32 lelttr 10340 . . . . . . . . . . . . . 14 (((𝑘 · 2) ∈ ℝ ∧ (𝑀 · 2) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3325, 28, 31, 32syl2an3an 1533 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3422, 33mpan2d 712 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2)))
3534ex 449 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝜑 → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2))))
3635com23 86 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
3718, 36sylbid 230 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
38373impia 1110 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
398, 38sylbi 207 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
4039impcom 445 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) < (𝑃 / 2))
4140adantr 472 . . . . 5 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → (𝑘 · 2) < (𝑃 / 2))
4241iftrued 4238 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑘 · 2))
437, 42eqtrd 2794 . . 3 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑘 · 2))
4419, 20gausslemma2dlem0d 25304 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4544nn0zd 11692 . . . . . 6 (𝜑𝑀 ∈ ℤ)
46 gausslemma2d.h . . . . . . . 8 𝐻 = ((𝑃 − 1) / 2)
4719, 46gausslemma2dlem0b 25302 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
4847nnzd 11693 . . . . . 6 (𝜑𝐻 ∈ ℤ)
4919, 20, 46gausslemma2dlem0g 25307 . . . . . 6 (𝜑𝑀𝐻)
50 eluz2 11905 . . . . . 6 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
5145, 48, 49, 50syl3anbrc 1429 . . . . 5 (𝜑𝐻 ∈ (ℤ𝑀))
52 fzss2 12594 . . . . 5 (𝐻 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝐻))
5351, 52syl 17 . . . 4 (𝜑 → (1...𝑀) ⊆ (1...𝐻))
5453sselda 3744 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝐻))
55 ovexd 6844 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ V)
562, 43, 54, 55fvmptd 6451 . 2 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
5756ralrimiva 3104 1 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cdif 3712  wss 3715  ifcif 4230  {csn 4321   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  cn 11232  2c2 11282  4c4 11284  cz 11589  cuz 11899  ...cfz 12539  cfl 12805  cprime 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fl 12807  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-prm 15608
This theorem is referenced by:  gausslemma2dlem6  25317
  Copyright terms: Public domain W3C validator