MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem1 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem1 25312
Description: Lemma 1 for gausslemma2d 25320. (Contributed by AV, 5-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
Assertion
Ref Expression
gausslemma2dlem1 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)

Proof of Theorem gausslemma2dlem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . . 5 𝐻 = ((𝑃 − 1) / 2)
31, 2gausslemma2dlem0b 25303 . . . 4 (𝜑𝐻 ∈ ℕ)
43nnnn0d 11553 . . 3 (𝜑𝐻 ∈ ℕ0)
5 fprodfac 14910 . . 3 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙)
64, 5syl 17 . 2 (𝜑 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙)
7 id 22 . . 3 (𝑙 = (𝑅𝑘) → 𝑙 = (𝑅𝑘))
8 fzfid 12980 . . 3 (𝜑 → (1...𝐻) ∈ Fin)
9 fzfi 12979 . . . 4 (1...𝐻) ∈ Fin
10 ovex 6823 . . . . . 6 (𝑥 · 2) ∈ V
11 ovex 6823 . . . . . 6 (𝑃 − (𝑥 · 2)) ∈ V
1210, 11ifex 4295 . . . . 5 if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ V
13 gausslemma2d.r . . . . 5 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
1412, 13fnmpti 6162 . . . 4 𝑅 Fn (1...𝐻)
151, 2, 13gausslemma2dlem1a 25311 . . . 4 (𝜑 → ran 𝑅 = (1...𝐻))
16 rneqdmfinf1o 8398 . . . 4 (((1...𝐻) ∈ Fin ∧ 𝑅 Fn (1...𝐻) ∧ ran 𝑅 = (1...𝐻)) → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
179, 14, 15, 16mp3an12i 1576 . . 3 (𝜑𝑅:(1...𝐻)–1-1-onto→(1...𝐻))
18 eqidd 2772 . . 3 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = (𝑅𝑘))
19 elfzelz 12549 . . . . 5 (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℤ)
2019zcnd 11685 . . . 4 (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℂ)
2120adantl 467 . . 3 ((𝜑𝑙 ∈ (1...𝐻)) → 𝑙 ∈ ℂ)
227, 8, 17, 18, 21fprodf1o 14883 . 2 (𝜑 → ∏𝑙 ∈ (1...𝐻)𝑙 = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
236, 22eqtrd 2805 1 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cdif 3720  ifcif 4225  {csn 4316   class class class wbr 4786  cmpt 4863  ran crn 5250   Fn wfn 6026  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  Fincfn 8109  cc 10136  1c1 10139   · cmul 10143   < clt 10276  cmin 10468   / cdiv 10886  2c2 11272  0cn0 11494  ...cfz 12533  !cfa 13264  cprod 14842  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-ioo 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843  df-dvds 15190  df-prm 15593
This theorem is referenced by:  gausslemma2dlem4  25315
  Copyright terms: Public domain W3C validator