![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0d | Structured version Visualization version GIF version |
Description: Auxiliary lemma 4 for gausslemma2d 25320. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
Ref | Expression |
---|---|
gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
2 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | 2 | gausslemma2dlem0a 25302 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | nnre 11229 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
5 | 4re 11299 | . . . . . 6 ⊢ 4 ∈ ℝ | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ∈ ℝ) |
7 | 4ne0 11319 | . . . . . 6 ⊢ 4 ≠ 0 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 4 ≠ 0) |
9 | 4, 6, 8 | redivcld 11055 | . . . 4 ⊢ (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ) |
10 | nnnn0 11501 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
11 | 10 | nn0ge0d 11556 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
12 | 4pos 11318 | . . . . . . 7 ⊢ 0 < 4 | |
13 | 5, 12 | pm3.2i 447 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
15 | divge0 11094 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
16 | 4, 11, 14, 15 | syl21anc 1475 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
17 | 9, 16 | jca 501 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4))) |
18 | flge0nn0 12829 | . . 3 ⊢ (((𝑃 / 4) ∈ ℝ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
19 | 3, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
20 | 1, 19 | syl5eqel 2854 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 {csn 4316 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 0cc0 10138 < clt 10276 ≤ cle 10277 / cdiv 10886 ℕcn 11222 2c2 11272 4c4 11274 ℕ0cn0 11494 ⌊cfl 12799 ℙcprime 15592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fl 12801 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-prm 15593 |
This theorem is referenced by: gausslemma2dlem0h 25309 gausslemma2dlem2 25313 gausslemma2dlem3 25314 gausslemma2dlem4 25315 gausslemma2dlem6 25318 |
Copyright terms: Public domain | W3C validator |