MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 25304
Description: Auxiliary lemma 3 for gausslemma2d 25320. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 3883 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 25303 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 11553 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 501 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 15595 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 11229 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 10550 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 11292 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 10272 . . . . . . . 8 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 11158 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 11501 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 11556 . . . . . . . . 9 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 11443 . . . . . . . . . 10 1 ≤ 2
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 11164 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 10399 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 11314 . . . . . . . . . 10 0 < 2
2312, 22pm3.2i 447 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 11100 . . . . . . . 8 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1476 . . . . . . 7 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 247 . . . . . 6 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
282, 8, 273syl 18 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃)
291, 28syl 17 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
304, 29syl5eqbr 4821 . . 3 (𝜑𝐻 < 𝑃)
31 prmndvdsfaclt 15642 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
327, 30, 31sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
336faccld 13275 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3433nnzd 11683 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
35 nnz 11601 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
362, 8, 353syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
371, 36syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
38 gcdcom 15443 . . . . 5 (((!‘𝐻) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3934, 37, 38syl2anc 573 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
4039eqeq1d 2773 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
41 coprm 15630 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
423, 34, 41syl2anc 573 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4340, 42bitr4d 271 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4432, 43mpbird 247 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cdif 3720  {csn 4316   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  !cfa 13264  cdvds 15189   gcd cgcd 15424  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593
This theorem is referenced by:  gausslemma2dlem7  25319
  Copyright terms: Public domain W3C validator