MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Structured version   Visualization version   GIF version

Theorem gastacl 17949
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
Assertion
Ref Expression
gastacl (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝑋
Allowed substitution hints:   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
2 ssrab2 3836 . . . 4 {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴} ⊆ 𝑋
31, 2eqsstri 3784 . . 3 𝐻𝑋
43a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻𝑋)
5 gagrp 17932 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
65adantr 466 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐺 ∈ Grp)
7 gasta.1 . . . . . 6 𝑋 = (Base‘𝐺)
8 eqid 2771 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 17658 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
106, 9syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝑋)
118gagrpid 17934 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ((0g𝐺) 𝐴) = 𝐴)
12 oveq1 6800 . . . . . 6 (𝑢 = (0g𝐺) → (𝑢 𝐴) = ((0g𝐺) 𝐴))
1312eqeq1d 2773 . . . . 5 (𝑢 = (0g𝐺) → ((𝑢 𝐴) = 𝐴 ↔ ((0g𝐺) 𝐴) = 𝐴))
1413, 1elrab2 3518 . . . 4 ((0g𝐺) ∈ 𝐻 ↔ ((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝐴) = 𝐴))
1510, 11, 14sylanbrc 572 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝐻)
16 ne0i 4069 . . 3 ((0g𝐺) ∈ 𝐻𝐻 ≠ ∅)
1715, 16syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ≠ ∅)
18 simpll 750 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ∈ (𝐺 GrpAct 𝑌))
1918, 5syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐺 ∈ Grp)
20 simpr 471 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝐻)
21 oveq1 6800 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 𝐴) = (𝑥 𝐴))
2221eqeq1d 2773 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 𝐴) = 𝐴 ↔ (𝑥 𝐴) = 𝐴))
2322, 1elrab2 3518 . . . . . . . . . . 11 (𝑥𝐻 ↔ (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2420, 23sylib 208 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2524simpld 482 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝑋)
2625adantrr 696 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑥𝑋)
27 simprr 756 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝐻)
28 oveq1 6800 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢 𝐴) = (𝑦 𝐴))
2928eqeq1d 2773 . . . . . . . . . . 11 (𝑢 = 𝑦 → ((𝑢 𝐴) = 𝐴 ↔ (𝑦 𝐴) = 𝐴))
3029, 1elrab2 3518 . . . . . . . . . 10 (𝑦𝐻 ↔ (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3127, 30sylib 208 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3231simpld 482 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝑋)
33 eqid 2771 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
347, 33grpcl 17638 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
3519, 26, 32, 34syl3anc 1476 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
36 simplr 752 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐴𝑌)
377, 33gaass 17937 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝑦𝑋𝐴𝑌)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3818, 26, 32, 36, 37syl13anc 1478 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3931simprd 483 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦 𝐴) = 𝐴)
4039oveq2d 6809 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 (𝑦 𝐴)) = (𝑥 𝐴))
4124simprd 483 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥 𝐴) = 𝐴)
4241adantrr 696 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 𝐴) = 𝐴)
4338, 40, 423eqtrd 2809 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴)
44 oveq1 6800 . . . . . . . . 9 (𝑢 = (𝑥(+g𝐺)𝑦) → (𝑢 𝐴) = ((𝑥(+g𝐺)𝑦) 𝐴))
4544eqeq1d 2773 . . . . . . . 8 (𝑢 = (𝑥(+g𝐺)𝑦) → ((𝑢 𝐴) = 𝐴 ↔ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4645, 1elrab2 3518 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4735, 43, 46sylanbrc 572 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4847anassrs 458 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) ∧ 𝑦𝐻) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4948ralrimiva 3115 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻)
50 simpll 750 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∈ (𝐺 GrpAct 𝑌))
5150, 5syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐺 ∈ Grp)
52 eqid 2771 . . . . . . 7 (invg𝐺) = (invg𝐺)
537, 52grpinvcl 17675 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
5451, 25, 53syl2anc 573 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝑋)
55 simplr 752 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐴𝑌)
567, 52gacan 17945 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝐴𝑌𝐴𝑌)) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5750, 25, 55, 55, 56syl13anc 1478 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5841, 57mpbid 222 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (((invg𝐺)‘𝑥) 𝐴) = 𝐴)
59 oveq1 6800 . . . . . . 7 (𝑢 = ((invg𝐺)‘𝑥) → (𝑢 𝐴) = (((invg𝐺)‘𝑥) 𝐴))
6059eqeq1d 2773 . . . . . 6 (𝑢 = ((invg𝐺)‘𝑥) → ((𝑢 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6160, 1elrab2 3518 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6254, 58, 61sylanbrc 572 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝐻)
6349, 62jca 501 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
6463ralrimiva 3115 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
657, 33, 52issubg2 17817 . . 3 (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
666, 65syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
674, 17, 64, 66mpbir3and 1427 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  {crab 3065  wss 3723  c0 4063  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  SubGrpcsubg 17796   GrpAct cga 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-subg 17799  df-ga 17930
This theorem is referenced by:  gastacos  17950  orbstafun  17951  orbstaval  17952  orbsta  17953  orbsta2  17954  sylow1lem5  18224
  Copyright terms: Public domain W3C validator