![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gagrpid | Structured version Visualization version GIF version |
Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
gagrpid.1 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gagrpid | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2771 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | gagrpid.1 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | isga 17931 | . . . . 5 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
5 | 4 | simprbi 484 | . . . 4 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
6 | 5 | simprd 483 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))) |
7 | simpl 468 | . . . 4 ⊢ ((( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ( 0 ⊕ 𝑥) = 𝑥) | |
8 | 7 | ralimi 3101 | . . 3 ⊢ (∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
9 | 6, 8 | syl 17 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
10 | oveq2 6804 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 0 ⊕ 𝑥) = ( 0 ⊕ 𝐴)) | |
11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | 10, 11 | eqeq12d 2786 | . . 3 ⊢ (𝑥 = 𝐴 → (( 0 ⊕ 𝑥) = 𝑥 ↔ ( 0 ⊕ 𝐴) = 𝐴)) |
13 | 12 | rspccva 3459 | . 2 ⊢ ((∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥 ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
14 | 9, 13 | sylan 569 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 × cxp 5248 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 GrpAct cga 17929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-map 8015 df-ga 17930 |
This theorem is referenced by: gafo 17936 gass 17941 gasubg 17942 galcan 17944 gacan 17945 gaorber 17948 gastacl 17949 |
Copyright terms: Public domain | W3C validator |