MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsuc2 Structured version   Visualization version   GIF version

Theorem fzsuc2 12512
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 11835 . 2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))))
2 zcn 11495 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 ax-1cn 10107 . . . . . . . 8 1 ∈ ℂ
4 npcan 10403 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
52, 3, 4sylancl 697 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
65oveq2d 6781 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀))
7 uncom 3865 . . . . . . . 8 (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅)
8 un0 4075 . . . . . . . 8 ({𝑀} ∪ ∅) = {𝑀}
97, 8eqtri 2746 . . . . . . 7 (∅ ∪ {𝑀}) = {𝑀}
10 zre 11494 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110ltm1d 11069 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀)
12 peano2zm 11533 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
13 fzn 12471 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1412, 13mpdan 705 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1511, 14mpbid 222 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅)
165sneqd 4297 . . . . . . . 8 (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀})
1715, 16uneq12d 3876 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀}))
18 fzsn 12497 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
199, 17, 183eqtr4a 2784 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀))
206, 19eqtr4d 2761 . . . . 5 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
21 oveq1 6772 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
2221oveq2d 6781 . . . . . 6 (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1)))
23 oveq2 6773 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1)))
2421sneqd 4297 . . . . . . 7 (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)})
2523, 24uneq12d 3876 . . . . . 6 (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
2622, 25eqeq12d 2739 . . . . 5 (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})))
2720, 26syl5ibrcom 237 . . . 4 (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})))
2827imp 444 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
295fveq2d 6308 . . . . . 6 (𝑀 ∈ ℤ → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
3029eleq2d 2789 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝑀)))
3130biimpa 502 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ𝑀))
32 fzsuc 12502 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3331, 32syl 17 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3428, 33jaodan 861 . 2 ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
351, 34sylan2 492 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1596  wcel 2103  cun 3678  c0 4023  {csn 4285   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  1c1 10050   + caddc 10052   < clt 10187  cmin 10379  cz 11490  cuz 11800  ...cfz 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441
This theorem is referenced by:  fseq1p1m1  12528  fzennn  12882  fsumm1  14600  fprodm1  14817  prmreclem4  15746  ppiprm  24997  ppinprm  24998  chtprm  24999  chtnprm  25000  poimirlem3  33644  poimirlem4  33645  mapfzcons  37698
  Copyright terms: Public domain W3C validator