MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsuc Structured version   Visualization version   GIF version

Theorem fzsuc 12502
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))

Proof of Theorem fzsuc
StepHypRef Expression
1 peano2uz 11855 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2 eluzfz2 12463 . . . . 5 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
4 peano2fzr 12468 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝑁 ∈ (𝑀...(𝑁 + 1)))
53, 4mpdan 705 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...(𝑁 + 1)))
6 fzsplit 12481 . . 3 (𝑁 ∈ (𝑀...(𝑁 + 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))))
75, 6syl 17 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))))
8 eluzelz 11810 . . . 4 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
9 fzsn 12497 . . . 4 ((𝑁 + 1) ∈ ℤ → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)})
101, 8, 93syl 18 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)})
1110uneq2d 3875 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
127, 11eqtrd 2758 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wcel 2103  cun 3678  {csn 4285  cfv 6001  (class class class)co 6765  1c1 10050   + caddc 10052  cz 11490  cuz 11800  ...cfz 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441
This theorem is referenced by:  elfzp1  12505  fztp  12511  fzsuc2  12512  fzdifsuc  12514  bpoly3  14909  prmind2  15521  vdwlem6  15813  gsummptfzsplit  18453  telgsumfzslem  18506  imasdsf1olem  22300  voliunlem1  23439  chtub  25057  2sqlem10  25273  dchrisum0flb  25319  pntpbnd1  25395  wlkp1  26709  iuninc  29607  esumfzf  30361  cvmliftlem10  31504  poimirlem2  33643  iunp1  39651  sge0p1  41051
  Copyright terms: Public domain W3C validator