Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzssfzo Structured version   Visualization version   GIF version

Theorem fzssfzo 30953
Description: Condition for an integer interval to be a subset of an half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Assertion
Ref Expression
fzssfzo (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzssfzo
StepHypRef Expression
1 elfzoel2 12677 . . . . . 6 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2 fzoval 12679 . . . . . 6 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
31, 2syl 17 . . . . 5 (𝐾 ∈ (𝑀..^𝑁) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
43eleq2d 2836 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ 𝐾 ∈ (𝑀...(𝑁 − 1))))
54ibi 256 . . 3 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
6 elfzuz3 12546 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝐾))
7 fzss2 12588 . . 3 ((𝑁 − 1) ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
85, 6, 73syl 18 . 2 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀...(𝑁 − 1)))
98, 3sseqtr4d 3791 1 (𝐾 ∈ (𝑀..^𝑁) → (𝑀...𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wss 3723  cfv 6030  (class class class)co 6796  1c1 10143  cmin 10472  cz 11584  cuz 11893  ...cfz 12533  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-neg 10475  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674
This theorem is referenced by:  signstcl  30982  signstf  30983  signstfvp  30988
  Copyright terms: Public domain W3C validator