![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsn | Structured version Visualization version GIF version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn | ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 12565 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 = 𝑀) | |
2 | elfz3 12564 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
3 | eleq1 2827 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑀 ∈ (𝑀...𝑀))) | |
4 | 2, 3 | syl5ibrcom 237 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 = 𝑀 → 𝑘 ∈ (𝑀...𝑀))) |
5 | 1, 4 | impbid2 216 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 = 𝑀)) |
6 | velsn 4337 | . . 3 ⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | |
7 | 5, 6 | syl6bbr 278 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (𝑀...𝑀) ↔ 𝑘 ∈ {𝑀})) |
8 | 7 | eqrdv 2758 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {csn 4321 (class class class)co 6814 ℤcz 11589 ...cfz 12539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-neg 10481 df-z 11590 df-uz 11900 df-fz 12540 |
This theorem is referenced by: fzsuc 12601 fzpred 12602 fzpr 12609 fzsuc2 12611 fz0sn 12653 fz0sn0fz1 12670 fzosn 12753 seqf1o 13056 hashsng 13371 sumsnf 14692 sumsn 14694 fsum1 14695 fsumm1 14699 fsum1p 14701 prodsn 14911 fprod1 14912 prodsnf 14913 fprod1p 14917 fprodabs 14923 binomfallfac 14991 ef0lem 15028 fprodefsum 15044 phi1 15700 4sqlem19 15889 vdwlem8 15914 strle1 16195 gsumws1 17597 telgsumfzs 18606 srgbinom 18765 pmatcollpw3fi1lem1 20813 pmatcollpw3fi1 20815 imasdsf1olem 22399 voliunlem1 23538 ply1termlem 24178 pntpbnd1 25495 0wlkons1 27294 iuninc 29707 fzspl 29880 esumfzf 30461 ballotlemfc0 30884 ballotlemfcc 30885 plymulx0 30954 signstf0 30975 subfac1 31488 subfacp1lem1 31489 subfacp1lem5 31494 subfacp1lem6 31495 cvmliftlem10 31604 fwddifn0 32598 poimirlem2 33742 poimirlem3 33743 poimirlem4 33744 poimirlem6 33746 poimirlem7 33747 poimirlem13 33753 poimirlem14 33754 poimirlem16 33756 poimirlem17 33757 poimirlem18 33758 poimirlem19 33759 poimirlem20 33760 poimirlem21 33761 poimirlem22 33762 poimirlem26 33766 poimirlem28 33768 poimirlem31 33771 poimirlem32 33772 sdclem1 33870 fdc 33872 trclfvdecomr 38540 k0004val0 38972 sumsnd 39702 fzdifsuc2 40041 dvnmul 40679 stoweidlem17 40755 carageniuncllem1 41259 caratheodorylem1 41264 hoidmvlelem3 41335 fzopredsuc 41861 sbgoldbo 42203 nnsum3primesprm 42206 |
Copyright terms: Public domain | W3C validator |