Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzsplit Structured version   Visualization version   GIF version

Theorem fzouzsplit 12542
 Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))

Proof of Theorem fzouzsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 11736 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
2 eluzelre 11736 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℝ)
3 lelttric 10182 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵𝑥𝑥 < 𝐵))
41, 2, 3syl2an 493 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝐵𝑥𝑥 < 𝐵))
54orcomd 402 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 < 𝐵𝐵𝑥))
6 id 22 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ (ℤ𝐴))
7 eluzelz 11735 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
8 elfzo2 12512 . . . . . . . . . 10 (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵))
9 df-3an 1056 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
108, 9bitri 264 . . . . . . . . 9 (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
1110baib 964 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
126, 7, 11syl2anr 494 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
13 eluzelz 11735 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℤ)
14 eluz 11739 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
157, 13, 14syl2an 493 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
1612, 15orbi12d 746 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)) ↔ (𝑥 < 𝐵𝐵𝑥)))
175, 16mpbird 247 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1817ex 449 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵))))
19 elun 3786 . . . 4 (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
2018, 19syl6ibr 242 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵))))
2120ssrdv 3642 . 2 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ𝐵)))
22 elfzouz 12513 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ𝐴))
2322ssriv 3640 . . . 4 (𝐴..^𝐵) ⊆ (ℤ𝐴)
2423a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) ⊆ (ℤ𝐴))
25 uzss 11746 . . 3 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐵) ⊆ (ℤ𝐴))
2624, 25unssd 3822 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ (ℤ𝐵)) ⊆ (ℤ𝐴))
2721, 26eqssd 3653 1 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ∪ cun 3605   ⊆ wss 3607   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  ..^cfzo 12504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505 This theorem is referenced by:  bitsres  15242  sseqfn  30580  sseqf  30582  poimirlem30  33569  mblfinlem2  33577  fmtno4prmfac  41809  wtgoldbnnsum4prm  42015  bgoldbnnsum3prm  42017
 Copyright terms: Public domain W3C validator