MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosubel3 Structured version   Visualization version   GIF version

Theorem fzosubel3 12743
Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzosubel3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴𝐵) ∈ (0..^𝐷))

Proof of Theorem fzosubel3
StepHypRef Expression
1 simpl 474 . . 3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐷)))
2 elfzoel1 12682 . . . . . . 7 (𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) → 𝐵 ∈ ℤ)
32adantr 472 . . . . . 6 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
43zcnd 11695 . . . . 5 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℂ)
54addid1d 10448 . . . 4 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐵 + 0) = 𝐵)
65oveq1d 6829 . . 3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → ((𝐵 + 0)..^(𝐵 + 𝐷)) = (𝐵..^(𝐵 + 𝐷)))
71, 6eleqtrrd 2842 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ((𝐵 + 0)..^(𝐵 + 𝐷)))
8 0zd 11601 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 0 ∈ ℤ)
9 simpr 479 . 2 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
10 fzosubel2 12742 . 2 ((𝐴 ∈ ((𝐵 + 0)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴𝐵) ∈ (0..^𝐷))
117, 3, 8, 9, 10syl13anc 1479 1 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴𝐵) ∈ (0..^𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  (class class class)co 6814  0cc0 10148   + caddc 10151  cmin 10478  cz 11589  ..^cfzo 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680
This theorem is referenced by:  eluzgtdifelfzo  12744  ccatass  13580  swrdfv2  13666  ccatswrd  13676  revccat  13735  ccatco  13801  clwwlkccatlem  27133  fargshiftfo  41906
  Copyright terms: Public domain W3C validator