MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzossfz Structured version   Visualization version   GIF version

Theorem fzossfz 12678
Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzossfz (𝐴..^𝐵) ⊆ (𝐴...𝐵)

Proof of Theorem fzossfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzofz 12675 . 2 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (𝐴...𝐵))
21ssriv 3744 1 (𝐴..^𝐵) ⊆ (𝐴...𝐵)
Colors of variables: wff setvar class
Syntax hints:  wss 3711  (class class class)co 6809  ...cfz 12515  ..^cfzo 12655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-n0 11481  df-z 11566  df-uz 11876  df-fz 12516  df-fzo 12656
This theorem is referenced by:  fzossnn0  12689  fzossnn  12707  elfzom1elp1fzo  12725  injresinjlem  12778  injresinj  12779  zmodfzp1  12884  uzindi  12971  wrdind  13672  wrd2ind  13673  scshwfzeqfzo  13768  telfsumo  14729  dfphi2  15677  cshwshashlem1  16000  psgnunilem5  18110  psgnunilem2  18111  efgredlemf  18350  efgredlemd  18353  efgredlemc  18354  uspgr2wlkeq  26748  wlkres  26773  redwlklem  26774  pthdivtx  26831  eucrct2eupth  27393  signstfvn  30951  signsvtn0  30952  breprexplemc  31015  fzossuz  40092  fzossz  40093  fourierdlem20  40843  fourierdlem25  40848  fourierdlem37  40860  fourierdlem64  40886  fourierdlem79  40901  fourierdlem89  40911  fourierdlem91  40913  fourierdlem101  40923  iccpartres  41860  iccpartipre  41863  iccpartleu  41870  bgoldbtbndlem2  42200
  Copyright terms: Public domain W3C validator