![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzossfz | Structured version Visualization version GIF version |
Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzossfz | ⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz 12675 | . 2 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (𝐴...𝐵)) | |
2 | 1 | ssriv 3744 | 1 ⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3711 (class class class)co 6809 ...cfz 12515 ..^cfzo 12655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-n0 11481 df-z 11566 df-uz 11876 df-fz 12516 df-fzo 12656 |
This theorem is referenced by: fzossnn0 12689 fzossnn 12707 elfzom1elp1fzo 12725 injresinjlem 12778 injresinj 12779 zmodfzp1 12884 uzindi 12971 wrdind 13672 wrd2ind 13673 scshwfzeqfzo 13768 telfsumo 14729 dfphi2 15677 cshwshashlem1 16000 psgnunilem5 18110 psgnunilem2 18111 efgredlemf 18350 efgredlemd 18353 efgredlemc 18354 uspgr2wlkeq 26748 wlkres 26773 redwlklem 26774 pthdivtx 26831 eucrct2eupth 27393 signstfvn 30951 signsvtn0 30952 breprexplemc 31015 fzossuz 40092 fzossz 40093 fourierdlem20 40843 fourierdlem25 40848 fourierdlem37 40860 fourierdlem64 40886 fourierdlem79 40901 fourierdlem89 40911 fourierdlem91 40913 fourierdlem101 40923 iccpartres 41860 iccpartipre 41863 iccpartleu 41870 bgoldbtbndlem2 42200 |
Copyright terms: Public domain | W3C validator |