MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoss2 Structured version   Visualization version   GIF version

Theorem fzoss2 12690
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzoss2
StepHypRef Expression
1 eluzel2 11884 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
2 peano2zm 11612 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝐾) → (𝐾 − 1) ∈ ℤ)
4 1zzd 11600 . . . 4 (𝑁 ∈ (ℤ𝐾) → 1 ∈ ℤ)
5 id 22 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ𝐾))
61zcnd 11675 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℂ)
7 ax-1cn 10186 . . . . . . 7 1 ∈ ℂ
8 npcan 10482 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
96, 7, 8sylancl 697 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → ((𝐾 − 1) + 1) = 𝐾)
109fveq2d 6356 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
115, 10eleqtrrd 2842 . . . 4 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
12 eluzsub 11909 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
133, 4, 11, 12syl3anc 1477 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
14 fzss2 12574 . . 3 ((𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
1513, 14syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
16 fzoval 12665 . . 3 (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
171, 16syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
18 eluzelz 11889 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
19 fzoval 12665 . . 3 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2018, 19syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2115, 17, 203sstr4d 3789 1 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6813  cc 10126  1c1 10129   + caddc 10131  cmin 10458  cz 11569  cuz 11879  ...cfz 12519  ..^cfzo 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660
This theorem is referenced by:  fzossrbm1  12691  fzosplit  12695  elfzoext  12719  fzossfzop1  12740  uzindi  12975  ccatass  13560  ccatrn  13561  ccatalpha  13565  swrdval2  13619  swrd0val  13620  swrd0len  13621  swrdccat1  13657  swrdccatin12lem2a  13685  splfv1  13706  revccat  13715  psgnunilem5  18114  efgsp1  18350  efgsres  18351  wlkres  26777  trlreslem  26806  crctcshwlkn0lem4  26916  wwlksm1edg  26990  wwlksnred  27010  clwwlkccatlem  27112  clwlkclwwlklem2fv1  27118  clwlkclwwlklem2  27123  clwwisshclwwslem  27137  clwwlkinwwlk  27169  clwwlkf  27176  wwlksubclwwlk  27189  clwlksfclwwlkOLD  27216  trlsegvdeg  27379  iundisjfi  29864  fz1nntr  29870  measiuns  30589  wrdres  30926  signstfvp  30957  signstfvc  30960  signstres  30961  signsvfn  30968  prodfzo03  30990  breprexplemc  31019  iccpartres  41864  iccpartigtl  41869  iccelpart  41879  pfxres  41898  pfxf  41899  pfxccat1  41920  repswpfx  41946
  Copyright terms: Public domain W3C validator