MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitsnm1 Structured version   Visualization version   GIF version

Theorem fzosplitsnm1 12737
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
fzosplitsnm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))

Proof of Theorem fzosplitsnm1
StepHypRef Expression
1 eluzelz 11889 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℤ)
21zcnd 11675 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℂ)
32adantl 473 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℂ)
4 ax-1cn 10186 . . . 4 1 ∈ ℂ
5 npcan 10482 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
65eqcomd 2766 . . . 4 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
73, 4, 6sylancl 697 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1))
87oveq2d 6829 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
9 eluzp1m1 11903 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ𝐴))
101adantl 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℤ)
11 peano2zm 11612 . . . . 5 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
12 uzid 11894 . . . . 5 ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)))
13 peano2uz 11934 . . . . 5 ((𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
1410, 11, 12, 134syl 19 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
15 elfzuzb 12529 . . . 4 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1))))
169, 14, 15sylanbrc 701 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)))
17 fzosplit 12695 . . 3 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
1816, 17syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
191, 11syl 17 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ)
2019adantl 473 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ)
21 fzosn 12733 . . . 4 ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2220, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2322uneq2d 3910 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
248, 18, 233eqtrd 2798 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cun 3713  {csn 4321  cfv 6049  (class class class)co 6813  cc 10126  1c1 10129   + caddc 10131  cmin 10458  cz 11569  cuz 11879  ...cfz 12519  ..^cfzo 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660
This theorem is referenced by:  elfzonlteqm1  12738  pthdlem1  26872  clwwlkccatlem  27112
  Copyright terms: Public domain W3C validator