![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version |
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssuz 12575 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ⊆ (ℤ≥‘𝑚) | |
2 | uzssz 11899 | . . . . 5 ⊢ (ℤ≥‘𝑚) ⊆ ℤ | |
3 | 1, 2 | sstri 3753 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ |
4 | ovex 6841 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
5 | 4 | elpw 4308 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
6 | 3, 5 | mpbir 221 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
7 | 6 | rgen2w 3063 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
8 | df-fzo 12660 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
9 | 8 | fmpt2 7405 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
10 | 7, 9 | mpbi 220 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 𝒫 cpw 4302 × cxp 5264 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 1c1 10129 − cmin 10458 ℤcz 11569 ℤ≥cuz 11879 ...cfz 12519 ..^cfzo 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-neg 10461 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 |
This theorem is referenced by: elfzoel1 12662 elfzoel2 12663 elfzoelz 12664 fzoval 12665 fzofi 12967 |
Copyright terms: Public domain | W3C validator |