![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzneuz | Structured version Visualization version GIF version |
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
Ref | Expression |
---|---|
fzneuz | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2uz 11905 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) | |
2 | 1 | adantl 473 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 + 1) ∈ (ℤ≥‘𝐾)) |
3 | eluzelre 11861 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
4 | ltp1 11024 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1)) | |
5 | peano2re 10372 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
6 | ltnle 10280 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
7 | 5, 6 | mpdan 705 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
8 | 4, 7 | mpbid 222 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁) |
9 | 3, 8 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ≤ 𝑁) |
10 | elfzle2 12509 | . . . . . 6 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
11 | 9, 10 | nsyl 135 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
12 | 11 | ad2antrr 764 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) |
13 | nelneq2 2852 | . . . 4 ⊢ (((𝑁 + 1) ∈ (ℤ≥‘𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) | |
14 | 2, 12, 13 | syl2anc 696 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (ℤ≥‘𝐾) = (𝑀...𝑁)) |
15 | eqcom 2755 | . . 3 ⊢ ((ℤ≥‘𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
16 | 14, 15 | sylnib 317 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
17 | eluzfz2 12513 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
18 | 17 | ad2antrr 764 | . . 3 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (𝑀...𝑁)) |
19 | nelneq2 2852 | . . 3 ⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | |
20 | 18, 19 | sylancom 704 | . 2 ⊢ (((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ≥‘𝐾)) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
21 | 16, 20 | pm2.61dan 867 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 1c1 10100 + caddc 10102 < clt 10237 ≤ cle 10238 ℤcz 11540 ℤ≥cuz 11850 ...cfz 12490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |