![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzn0 | Structured version Visualization version GIF version |
Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzn0 | ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3964 | . . 3 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁)) | |
2 | elfzuz2 12384 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | 2 | exlimiv 1898 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | 1, 3 | sylbi 207 | . 2 ⊢ ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzfz1 12386 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
6 | ne0i 3954 | . . 3 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≠ ∅) |
8 | 4, 7 | impbii 199 | 1 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 ‘cfv 5926 (class class class)co 6690 ℤ≥cuz 11725 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-neg 10307 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: fzn 12395 fzfi 12811 fseqsupcl 12816 fsumrev2 14558 gsumval3 18354 pmatcollpw3fi 20638 iscmet3 23137 dchrisum0flblem1 25242 pntrsumbnd2 25301 wlkn0 26572 fzdifsuc2 39838 stoweidlem26 40561 |
Copyright terms: Public domain | W3C validator |