MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn Structured version   Visualization version   GIF version

Theorem fzn 12395
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))

Proof of Theorem fzn
StepHypRef Expression
1 fzn0 12393 . . . 4 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
2 eluz 11739 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
31, 2syl5bb 272 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) ≠ ∅ ↔ 𝑀𝑁))
4 zre 11419 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 11419 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 lenlt 10154 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
74, 5, 6syl2an 493 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
83, 7bitr2d 269 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 < 𝑀 ↔ (𝑀...𝑁) ≠ ∅))
98necon4bbid 2864 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973   < clt 10112  cle 10113  cz 11415  cuz 11725  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  fz1n  12397  fz10  12400  fzsuc2  12436  fzm1  12458  fzon  12528  hashfzp1  13256  isumsplit  14616  arisum2  14637  risefall0lem  14801  prmreclem4  15670  prmreclem5  15671  vdwap0  15727  abelthlem6  24235  ppi1  24935  cht1  24936  ppiublem2  24973  lgsdir2lem3  25097  wlkv0  26603  chtvalz  30835  fz0n  31742  poimirlem10  33549  poimirlem23  33562  poimirlem28  33567  fdc  33671  mettrifi  33683  fzisoeu  39828  fzdifsuc2  39838
  Copyright terms: Public domain W3C validator