Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmul Structured version   Visualization version   GIF version

Theorem fzmul 33769
Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))

Proof of Theorem fzmul
StepHypRef Expression
1 elfz1 12445 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
213adant3 1124 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
3 zre 11494 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11494 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
5 nnre 11140 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
6 nngt0 11162 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 0 < 𝐾)
75, 6jca 555 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℝ ∧ 0 < 𝐾))
8 lemul2 10989 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
93, 4, 7, 8syl3an 1481 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1093expa 1111 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1110biimpd 219 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1211adantllr 757 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
13 zre 11494 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 lemul2 10989 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
154, 13, 7, 14syl3an 1481 . . . . . . . . . . . 12 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
16153expa 1111 . . . . . . . . . . 11 (((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1716ancom1s 882 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1817biimpd 219 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1918adantlll 756 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
2012, 19anim12d 587 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
21 zmulcl 11539 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2221ex 449 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 · 𝑀) ∈ ℤ))
23 zmulcl 11539 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
2423ex 449 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑁 ∈ ℤ → (𝐾 · 𝑁) ∈ ℤ))
25 zmulcl 11539 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 · 𝐽) ∈ ℤ)
2625ex 449 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐽 ∈ ℤ → (𝐾 · 𝐽) ∈ ℤ))
2722, 24, 263anim123d 1519 . . . . . . . . . . 11 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ)))
28 elfz 12446 . . . . . . . . . . . 12 (((𝐾 · 𝐽) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
29283coml 1121 . . . . . . . . . . 11 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3027, 29syl6 35 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
31 nnz 11512 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
3230, 31syl11 33 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
33323expa 1111 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
3433imp 444 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3520, 34sylibrd 249 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3635an32s 881 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) ∧ 𝐽 ∈ ℤ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3736exp4b 633 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ ℤ → (𝑀𝐽 → (𝐽𝑁 → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))))
38373impd 1405 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
39383impa 1100 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
402, 39sylbid 230 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2103   class class class wbr 4760  (class class class)co 6765  cr 10048  0cc0 10049   · cmul 10054   < clt 10187  cle 10188  cn 11133  cz 11490  ...cfz 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-fz 12441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator