MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen Structured version   Visualization version   GIF version

Theorem fzen 12564
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))

Proof of Theorem fzen
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6824 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ∈ V)
2 ovexd 6824 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
3 elfz1 12537 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
43biimpd 219 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
543adant3 1125 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
6 zaddcl 11618 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ℤ)
76expcom 398 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
873ad2ant3 1128 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
98adantrd 475 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ∈ ℤ))
10 zre 11582 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
11 zre 11582 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12 zre 11582 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
13 leadd1 10697 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1410, 11, 12, 13syl3an 1162 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1514biimpd 219 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1615adantrd 475 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
17163com23 1119 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
18173expia 1113 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))))
1918impd 396 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
20193adant2 1124 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
21 zre 11582 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22 leadd1 10697 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2311, 21, 12, 22syl3an 1162 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2423biimpd 219 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2524adantld 474 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
26253coml 1120 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
27263expia 1113 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
2827impd 396 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
29283adant1 1123 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
309, 20, 293jcad 1122 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
31 zaddcl 11618 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
32313adant2 1124 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
33 zaddcl 11618 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
34333adant1 1123 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
35 elfz1 12537 . . . . . . . 8 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3632, 34, 35syl2anc 565 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3736biimprd 238 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3830, 37syldc 48 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
39383impb 1106 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4039com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
415, 40syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
42 elfz1 12537 . . . . 5 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4332, 34, 42syl2anc 565 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4443biimpd 219 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
45 zsubcl 11620 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ ℤ)
4645expcom 398 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
47463ad2ant3 1128 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
4847adantrd 475 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ∈ ℤ))
49 zre 11582 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
50 leaddsub 10705 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5110, 12, 49, 50syl3an 1162 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5251biimpd 219 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5352adantrd 475 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾)))
54533expia 1113 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾))))
5554impd 396 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
56553adant2 1124 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
57 lesubadd 10701 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5849, 12, 21, 57syl3an 1162 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5958biimprd 238 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ≤ (𝑁 + 𝐾) → (𝑚𝐾) ≤ 𝑁))
6059adantld 474 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
61603coml 1120 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
62613expia 1113 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁)))
6362impd 396 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6463ancoms 455 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
65643adant1 1123 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6648, 56, 653jcad 1122 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
67 elfz1 12537 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ∈ (𝑀...𝑁) ↔ ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
6867biimprd 238 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
69683adant3 1125 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7066, 69syldc 48 . . . . 5 ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
71703impb 1106 . . . 4 ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7271com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7344, 72syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
745imp 393 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁))
7574simp1d 1135 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
7675ex 397 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ))
7744imp 393 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)))
7877simp1d 1135 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑚 ∈ ℤ)
7978ex 397 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑚 ∈ ℤ))
80 zcn 11583 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
81 zcn 11583 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
82 zcn 11583 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
83 subadd 10485 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚𝐾) = 𝑘 ↔ (𝐾 + 𝑘) = 𝑚))
84 eqcom 2777 . . . . . . . . 9 ((𝑚𝐾) = 𝑘𝑘 = (𝑚𝐾))
85 eqcom 2777 . . . . . . . . 9 ((𝐾 + 𝑘) = 𝑚𝑚 = (𝐾 + 𝑘))
8683, 84, 853bitr3g 302 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝐾 + 𝑘)))
87 addcom 10423 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
88873adant1 1123 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
8988eqeq2d 2780 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 = (𝐾 + 𝑘) ↔ 𝑚 = (𝑘 + 𝐾)))
9086, 89bitrd 268 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
9180, 81, 82, 90syl3an 1162 . . . . . 6 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
92913coml 1120 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
93923expib 1115 . . . 4 (𝐾 ∈ ℤ → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
94933ad2ant3 1128 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
9576, 79, 94syl2and 587 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
961, 2, 41, 73, 95en3d 8145 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144   class class class wbr 4784  (class class class)co 6792  cen 8105  cc 10135  cr 10136   + caddc 10140  cle 10276  cmin 10467  cz 11578  ...cfz 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-fz 12533
This theorem is referenced by:  fz01en  12575  fzen2  12975  hashfz  13415  mertenslem1  14822  hashdvds  15686  birthdaylem2  24899  eldioph2lem1  37842
  Copyright terms: Public domain W3C validator