MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen Structured version   Visualization version   GIF version

Theorem fzen 12355
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))

Proof of Theorem fzen
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6677 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ∈ V)
2 ovexd 6677 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
3 elfz1 12328 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
43biimpd 219 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
543adant3 1080 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
6 zaddcl 11414 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ℤ)
76expcom 451 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
873ad2ant3 1083 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
98adantrd 484 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ∈ ℤ))
10 zre 11378 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
11 zre 11378 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12 zre 11378 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
13 leadd1 10493 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1410, 11, 12, 13syl3an 1367 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1514biimpd 219 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
1615adantrd 484 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
17163com23 1270 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
18173expia 1266 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))))
1918impd 447 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
20193adant2 1079 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
21 zre 11378 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22 leadd1 10493 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2311, 21, 12, 22syl3an 1367 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2423biimpd 219 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
2524adantld 483 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
26253coml 1271 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
27263expia 1266 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
2827impd 447 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
29283adant1 1078 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
309, 20, 293jcad 1242 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
31 zaddcl 11414 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
32313adant2 1079 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
33 zaddcl 11414 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
34333adant1 1078 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
35 elfz1 12328 . . . . . . . 8 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3632, 34, 35syl2anc 693 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
3736biimprd 238 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3830, 37syldc 48 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
39383impb 1259 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4039com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
415, 40syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
42 elfz1 12328 . . . . 5 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4332, 34, 42syl2anc 693 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
4443biimpd 219 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
45 zsubcl 11416 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ ℤ)
4645expcom 451 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
47463ad2ant3 1083 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
4847adantrd 484 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ∈ ℤ))
49 zre 11378 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
50 leaddsub 10501 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5110, 12, 49, 50syl3an 1367 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5251biimpd 219 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
5352adantrd 484 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾)))
54533expia 1266 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾))))
5554impd 447 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
56553adant2 1079 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
57 lesubadd 10497 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5849, 12, 21, 57syl3an 1367 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
5958biimprd 238 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ≤ (𝑁 + 𝐾) → (𝑚𝐾) ≤ 𝑁))
6059adantld 483 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
61603coml 1271 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
62613expia 1266 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁)))
6362impd 447 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6463ancoms 469 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
65643adant1 1078 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
6648, 56, 653jcad 1242 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
67 elfz1 12328 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ∈ (𝑀...𝑁) ↔ ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
6867biimprd 238 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
69683adant3 1080 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7066, 69syldc 48 . . . . 5 ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
71703impb 1259 . . . 4 ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7271com12 32 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
7344, 72syld 47 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
745imp 445 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁))
7574simp1d 1072 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
7675ex 450 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ))
7744imp 445 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)))
7877simp1d 1072 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑚 ∈ ℤ)
7978ex 450 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑚 ∈ ℤ))
80 zcn 11379 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
81 zcn 11379 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
82 zcn 11379 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
83 subadd 10281 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚𝐾) = 𝑘 ↔ (𝐾 + 𝑘) = 𝑚))
84 eqcom 2628 . . . . . . . . 9 ((𝑚𝐾) = 𝑘𝑘 = (𝑚𝐾))
85 eqcom 2628 . . . . . . . . 9 ((𝐾 + 𝑘) = 𝑚𝑚 = (𝐾 + 𝑘))
8683, 84, 853bitr3g 302 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝐾 + 𝑘)))
87 addcom 10219 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
88873adant1 1078 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
8988eqeq2d 2631 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 = (𝐾 + 𝑘) ↔ 𝑚 = (𝑘 + 𝐾)))
9086, 89bitrd 268 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
9180, 81, 82, 90syl3an 1367 . . . . . 6 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
92913coml 1271 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
93923expib 1267 . . . 4 (𝐾 ∈ ℤ → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
94933ad2ant3 1083 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
9576, 79, 94syl2and 500 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
961, 2, 41, 73, 95en3d 7989 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989   class class class wbr 4651  (class class class)co 6647  cen 7949  cc 9931  cr 9932   + caddc 9936  cle 10072  cmin 10263  cz 11374  ...cfz 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-fz 12324
This theorem is referenced by:  fz01en  12366  fzen2  12763  hashfz  13209  mertenslem1  14610  hashdvds  15474  birthdaylem2  24673  eldioph2lem1  37149
  Copyright terms: Public domain W3C validator