![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz0n | Structured version Visualization version GIF version |
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
Ref | Expression |
---|---|
fz0n | ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11426 | . . 3 ⊢ 0 ∈ ℤ | |
2 | nn0z 11438 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | peano2zm 11458 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
5 | fzn 12395 | . . 3 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) | |
6 | 1, 4, 5 | sylancr 696 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) |
7 | elnn0 11332 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
8 | nnge1 11084 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
9 | nnre 11065 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 1re 10077 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
11 | subge0 10579 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁)) | |
12 | 0re 10078 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
13 | resubcl 10383 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
14 | lenlt 10154 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) | |
15 | 12, 13, 14 | sylancr 696 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) |
16 | 11, 15 | bitr3d 270 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
17 | 9, 10, 16 | sylancl 695 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
18 | 8, 17 | mpbid 222 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0) |
19 | nnne0 11091 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
20 | 19 | neneqd 2828 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
21 | 18, 20 | 2falsed 365 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
22 | oveq1 6697 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 − 1) = (0 − 1)) | |
23 | df-neg 10307 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
24 | 22, 23 | syl6eqr 2703 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 − 1) = -1) |
25 | neg1lt0 11165 | . . . . . 6 ⊢ -1 < 0 | |
26 | 24, 25 | syl6eqbr 4724 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 − 1) < 0) |
27 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
28 | 26, 27 | 2thd 255 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
29 | 21, 28 | jaoi 393 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
30 | 7, 29 | sylbi 207 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
31 | 6, 30 | bitr3d 270 | 1 ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∅c0 3948 class class class wbr 4685 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 < clt 10112 ≤ cle 10113 − cmin 10304 -cneg 10305 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |