![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0 | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
Ref | Expression |
---|---|
fz0 | ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3036 | . . 3 ⊢ (𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ) | |
2 | df-nel 3036 | . . 3 ⊢ (𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ) | |
3 | 1, 2 | orbi12i 544 | . 2 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) |
4 | ianor 510 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) | |
5 | fzf 12523 | . . . . 5 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6213 | . . . 4 ⊢ dom ... = (ℤ × ℤ) |
7 | 6 | ndmov 6983 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
8 | 4, 7 | sylbir 225 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
9 | 3, 8 | sylbi 207 | 1 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∉ wnel 3035 ∅c0 4058 𝒫 cpw 4302 × cxp 5264 (class class class)co 6813 ℤcz 11569 ...cfz 12519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-neg 10461 df-z 11570 df-fz 12520 |
This theorem is referenced by: ffz0iswrd 13518 |
Copyright terms: Public domain | W3C validator |