![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvtp3 | Structured version Visualization version GIF version |
Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp3.1 | ⊢ 𝐶 ∈ V |
fvtp3.4 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fvtp3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 4428 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
2 | 1 | fveq1i 6354 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) |
3 | necom 2985 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvtp3.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
5 | fvtp3.4 | . . . . 5 ⊢ 𝐹 ∈ V | |
6 | 4, 5 | fvtp2 6626 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
7 | 3, 6 | sylan2b 493 | . . 3 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
8 | 7 | ancoms 468 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
9 | 2, 8 | syl5eq 2806 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 {ctp 4325 〈cop 4327 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-iota 6012 df-fun 6051 df-fv 6057 |
This theorem is referenced by: fntpb 6638 rabren3dioph 37899 nnsum4primesodd 42212 nnsum4primesoddALTV 42213 |
Copyright terms: Public domain | W3C validator |