![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvtp1g | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
fvtp1g | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4326 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉}) | |
2 | 1 | fveq1i 6354 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) |
3 | necom 2985 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 6610 | . . . . 5 ⊢ (𝐶 ≠ 𝐴 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) | |
5 | 3, 4 | sylbi 207 | . . . 4 ⊢ (𝐴 ≠ 𝐶 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
6 | 5 | ad2antll 767 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
7 | fvpr1g 6623 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) | |
8 | 7 | 3expa 1112 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
9 | 8 | adantrr 755 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
10 | 6, 9 | eqtrd 2794 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = 𝐷) |
11 | 2, 10 | syl5eq 2806 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∪ cun 3713 {csn 4321 {cpr 4323 {ctp 4325 〈cop 4327 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-iota 6012 df-fun 6051 df-fv 6057 |
This theorem is referenced by: fvtp2g 6629 estrreslem1 16998 |
Copyright terms: Public domain | W3C validator |