![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvsnun2 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 6612. (Contributed by NM, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ 𝐴 ∈ V |
fvsnun.2 | ⊢ 𝐵 ∈ V |
fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun2 | ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 5547 | . . . 4 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) |
3 | resundir 5569 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) | |
4 | disjdif 4184 | . . . . . . 7 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
5 | fvsnun.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
6 | fvsnun.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
7 | 5, 6 | fnsn 6107 | . . . . . . . 8 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
8 | fnresdisj 6162 | . . . . . . . 8 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅) |
10 | 4, 9 | mpbi 220 | . . . . . 6 ⊢ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅ |
11 | residm 5588 | . . . . . 6 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
12 | 10, 11 | uneq12i 3908 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
13 | uncom 3900 | . . . . 5 ⊢ (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) | |
14 | un0 4110 | . . . . 5 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
15 | 12, 13, 14 | 3eqtri 2786 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
16 | 2, 3, 15 | 3eqtri 2786 | . . 3 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
17 | 16 | fveq1i 6353 | . 2 ⊢ ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) |
18 | fvres 6368 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺‘𝐷)) | |
19 | fvres 6368 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) | |
20 | 17, 18, 19 | 3eqtr3a 2818 | 1 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∖ cdif 3712 ∪ cun 3713 ∩ cin 3714 ∅c0 4058 {csn 4321 〈cop 4327 ↾ cres 5268 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: facnn 13256 |
Copyright terms: Public domain | W3C validator |