MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsetsid Structured version   Visualization version   GIF version

Theorem fvsetsid 15937
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsval 15935 . . . 4 ((𝐹𝑉𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
213adant2 1100 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
32fveq1d 6231 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
4 simp2 1082 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑋𝑊)
5 simp3 1083 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑌𝑈)
6 neldifsn 4354 . . . . 5 ¬ 𝑋 ∈ (V ∖ {𝑋})
7 dmres 5454 . . . . . . 7 dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹)
8 inss1 3866 . . . . . . 7 ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋})
97, 8eqsstri 3668 . . . . . 6 dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋})
109sseli 3632 . . . . 5 (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋}))
116, 10mto 188 . . . 4 ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))
1211a1i 11 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})))
13 fsnunfv 6494 . . 3 ((𝑋𝑊𝑌𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
144, 5, 12, 13syl3anc 1366 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
153, 14eqtrd 2685 1 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cun 3605  cin 3606  {csn 4210  cop 4216  dom cdm 5143  cres 5145  cfv 5926  (class class class)co 6690   sSet csts 15902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-sets 15911
This theorem is referenced by:  mdetunilem9  20474
  Copyright terms: Public domain W3C validator