MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrnressn Structured version   Visualization version   GIF version

Theorem fvrnressn 6571
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvrnressn (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))

Proof of Theorem fvrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5262 . . 3 (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋})
21eleq2i 2842 . 2 ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}))
3 opeq1 4539 . . . . 5 (𝑥 = 𝑋 → ⟨𝑥, (𝐹𝑋)⟩ = ⟨𝑋, (𝐹𝑋)⟩)
43eleq1d 2835 . . . 4 (𝑥 = 𝑋 → (⟨𝑥, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
54spcegv 3445 . . 3 (𝑋𝑉 → (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 → ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
6 fvex 6342 . . . 4 (𝐹𝑋) ∈ V
7 elimasng 5632 . . . 4 ((𝑋𝑉 ∧ (𝐹𝑋) ∈ V) → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
86, 7mpan2 671 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
9 elrn2g 5451 . . . 4 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
106, 9mp1i 13 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
115, 8, 103imtr4d 283 . 2 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
122, 11syl5bir 233 1 (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wex 1852  wcel 2145  Vcvv 3351  {csn 4316  cop 4322  ran crn 5250  cres 5251  cima 5252  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fv 6039
This theorem is referenced by:  fvn0fvelrn  6573
  Copyright terms: Public domain W3C validator