MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6378
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 3920 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 4942 . . . . 5 ∅ ∈ V
43snid 4353 . . . 4 ∅ ∈ {∅}
52, 4sselii 3741 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5syl6eqel 2847 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 3919 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6347 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 144 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvexd 6365 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
11 fvbr0 6377 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1211ori 389 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1312con1i 144 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
14 brelrng 5510 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
159, 10, 13, 14syl3anc 1477 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
167, 15sseldi 3742 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
176, 16pm2.61i 176 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1632  wcel 2139  Vcvv 3340  cun 3713  c0 4058  {csn 4321   class class class wbr 4804  ran crn 5267  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-cnv 5274  df-dm 5276  df-rn 5277  df-iota 6012  df-fv 6057
This theorem is referenced by:  fvssunirn  6379  dfac4  9155  dfac2b  9163  dfac2OLD  9165  dfacacn  9175  axdc2lem  9482  axcclem  9491  plusffval  17468  staffval  19069  scaffval  19103  lpival  19467  ipffval  20215  nmfval  22614  tchex  23236  tchnmfval  23247  orderseqlem  32079  rrnval  33957  lsatset  34798  fvnonrel  38423
  Copyright terms: Public domain W3C validator