MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3g Structured version   Visualization version   GIF version

Theorem fvopab3g 6244
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
fvopab3g.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3g.3 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3g.4 (𝑥𝐶 → ∃!𝑦𝜑)
fvopab3g.5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3g ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3g
StepHypRef Expression
1 eleq1 2686 . . . 4 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3g.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 746 . . 3 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3g.3 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 739 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 4963 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
7 fvopab3g.4 . . . . . 6 (𝑥𝐶 → ∃!𝑦𝜑)
8 fvopab3g.5 . . . . . 6 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
97, 8fnopab 5985 . . . . 5 𝐹 Fn 𝐶
10 fnopfvb 6204 . . . . 5 ((𝐹 Fn 𝐶𝐴𝐶) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
119, 10mpan 705 . . . 4 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
128eleq2i 2690 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
1311, 12syl6bb 276 . . 3 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
1413adantr 481 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
15 ibar 525 . . 3 (𝐴𝐶 → (𝜒 ↔ (𝐴𝐶𝜒)))
1615adantr 481 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 ↔ (𝐴𝐶𝜒)))
176, 14, 163bitr4d 300 1 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  ∃!weu 2469  cop 4161  {copab 4682   Fn wfn 5852  cfv 5857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fn 5860  df-fv 5865
This theorem is referenced by:  recmulnq  9746
  Copyright terms: Public domain W3C validator