MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpts Structured version   Visualization version   GIF version

Theorem fvmpts 6324
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fvmpts.1 𝐹 = (𝑥𝐶𝐵)
Assertion
Ref Expression
fvmpts ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpts
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3569 . 2 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
2 fvmpts.1 . . 3 𝐹 = (𝑥𝐶𝐵)
3 nfcv 2793 . . . 4 𝑦𝐵
4 nfcsb1v 3582 . . . 4 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3575 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 4782 . . 3 (𝑥𝐶𝐵) = (𝑦𝐶𝑦 / 𝑥𝐵)
72, 6eqtri 2673 . 2 𝐹 = (𝑦𝐶𝑦 / 𝑥𝐵)
81, 7fvmptg 6319 1 ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  csb 3566  cmpt 4762  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934
This theorem is referenced by:  fvmptd  6327  fvmpt2curryd  7442  mptnn0fsupp  12837  mptnn0fsuppr  12839  zsum  14493  prodss  14721  fprodser  14723  fprodn0  14753  fprodefsum  14869  pcmpt  15643  issubc  16542  gsummptnn0fz  18428  mptscmfsupp0  18976  gsummoncoe1  19722  fvmptnn04if  20702  prdsdsf  22219  itgparts  23855  dchrisumlema  25222  abfmpeld  29582  abfmpel  29583  cdlemk40  36522  aomclem6  37946  ellimcabssub0  40167  constlimc  40174  vonn0ioo2  41225  vonn0icc2  41227
  Copyright terms: Public domain W3C validator