MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifa Structured version   Visualization version   GIF version

Theorem fvmptnn04ifa 20636
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifa ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifa
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1080 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1080 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1061 . 2 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁 / 𝑛𝐴𝑉)
7 eqidd 2621 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐴)
8 simpr 477 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
98gt0ne0d 10577 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
109neneqd 2796 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
1110pm2.21d 118 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁 = 0 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
1211impancom 456 . . . 4 ((𝜑𝑁 = 0) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
13123adant3 1079 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)))
14133imp 1254 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐵)
152nnne0d 11050 . . . . . . . . 9 (𝜑𝑆 ≠ 0)
1615necomd 2846 . . . . . . . 8 (𝜑 → 0 ≠ 𝑆)
1716adantr 481 . . . . . . 7 ((𝜑𝑁 = 0) → 0 ≠ 𝑆)
18 neeq1 2853 . . . . . . . 8 (𝑁 = 0 → (𝑁𝑆 ↔ 0 ≠ 𝑆))
1918adantl 482 . . . . . . 7 ((𝜑𝑁 = 0) → (𝑁𝑆 ↔ 0 ≠ 𝑆))
2017, 19mpbird 247 . . . . . 6 ((𝜑𝑁 = 0) → 𝑁𝑆)
21203adant3 1079 . . . . 5 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → 𝑁𝑆)
2221neneqd 2796 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑁 = 𝑆)
2322pm2.21d 118 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶))
2423imp 445 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐶)
25 nnnn0 11284 . . . . . . . 8 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
26 nn0nlt0 11304 . . . . . . . 8 (𝑆 ∈ ℕ0 → ¬ 𝑆 < 0)
272, 25, 263syl 18 . . . . . . 7 (𝜑 → ¬ 𝑆 < 0)
2827adantr 481 . . . . . 6 ((𝜑𝑁 = 0) → ¬ 𝑆 < 0)
29 breq2 4648 . . . . . . . 8 (𝑁 = 0 → (𝑆 < 𝑁𝑆 < 0))
3029notbid 308 . . . . . . 7 (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3130adantl 482 . . . . . 6 ((𝜑𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
3228, 31mpbird 247 . . . . 5 ((𝜑𝑁 = 0) → ¬ 𝑆 < 𝑁)
33323adant3 1079 . . . 4 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → ¬ 𝑆 < 𝑁)
3433pm2.21d 118 . . 3 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷))
3534imp 445 . 2 (((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐴 = 𝑁 / 𝑛𝐷)
361, 3, 5, 6, 7, 14, 24, 35fvmptnn04if 20635 1 ((𝜑𝑁 = 0 ∧ 𝑁 / 𝑛𝐴𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  csb 3526  ifcif 4077   class class class wbr 4644  cmpt 4720  cfv 5876  0cc0 9921   < clt 10059  cn 11005  0cn0 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator