![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt3i | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt3i.c | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvmpt3i | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmpt3.b | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | fvmpt3i.c | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ V) |
5 | 1, 2, 4 | fvmpt3 6448 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ↦ cmpt 4881 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 |
This theorem is referenced by: isf32lem9 9375 axcc2lem 9450 caucvg 14608 ismre 16452 mrisval 16492 frmdup1 17602 frmdup2 17603 qusghm 17898 pmtrfval 18070 odf1 18179 vrgpfval 18379 dprdz 18629 dmdprdsplitlem 18636 dprd2dlem2 18639 dprd2dlem1 18640 dprd2da 18641 ablfac1a 18668 ablfac1b 18669 ablfac1eu 18672 ipdir 20186 ipass 20192 isphld 20201 istopon 20919 qustgpopn 22124 qustgplem 22125 tchcph 23236 cmvth 23953 mvth 23954 dvle 23969 lhop1 23976 dvfsumlem3 23990 pige3 24468 fsumdvdscom 25110 logfacbnd3 25147 dchrptlem1 25188 dchrptlem2 25189 lgsdchrval 25278 dchrisumlem3 25379 dchrisum0flblem1 25396 dchrisum0fno1 25399 dchrisum0lem1b 25403 dchrisum0lem2a 25405 dchrisum0lem2 25406 logsqvma2 25431 log2sumbnd 25432 sgnsv 30036 measdivcstOLD 30596 measdivcst 30597 mrexval 31705 mexval 31706 mdvval 31708 msubvrs 31764 mthmval 31779 f1omptsnlem 33494 upixp 33837 ismrer1 33950 uzmptshftfval 39047 amgmwlem 43061 amgmlemALT 43062 |
Copyright terms: Public domain | W3C validator |