![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpt2f | Structured version Visualization version GIF version |
Description: Value of a function given by the "maps to" notation. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
Ref | Expression |
---|---|
fvmpt2f.0 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
fvmpt2f | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3678 | . . 3 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) | |
2 | csbid 3683 | . . 3 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
3 | 1, 2 | syl6eq 2811 | . 2 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
4 | fvmpt2f.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
6 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
7 | nfcsb1v 3691 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
8 | csbeq1a 3684 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
9 | 4, 5, 6, 7, 8 | cbvmptf 4901 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
10 | 3, 9 | fvmptg 6444 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 Ⅎwnfc 2890 ⦋csb 3675 ↦ cmpt 4882 ‘cfv 6050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fv 6058 |
This theorem is referenced by: offval2f 7076 fmptcof2 29788 funcnvmptOLD 29798 funcnvmpt 29799 esumc 30444 |
Copyright terms: Public domain | W3C validator |