![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmap | Structured version Visualization version GIF version |
Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
fvmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fvmap.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑𝑚 𝐵)) |
fvmap.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fvmap | ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | fvmap.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
3 | fvmap.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑𝑚 𝐵)) | |
4 | fvmap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fvmap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | elmapg 8038 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴)) | |
7 | 4, 5, 6 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
8 | 3, 7 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
9 | 8 | ffvelrnda 6523 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ 𝐴) |
10 | 1, 2, 9 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 |
This theorem is referenced by: ssmapsn 39925 hoidmvle 41338 |
Copyright terms: Public domain | W3C validator |