![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvilbd | Structured version Visualization version GIF version |
Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
Ref | Expression |
---|---|
fvilbd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
fvilbd | ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3771 | . 2 ⊢ 𝑅 ⊆ 𝑅 | |
2 | fvilbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
3 | fvi 6397 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
5 | 1, 4 | syl5sseqr 3801 | 1 ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 I cid 5156 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |