![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvfundmfvn0 | Structured version Visualization version GIF version |
Description: If a class' value at an argument is not the empty set, the argument is contained in the domain of the class, and the class restricted to the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
fvfundmfvn0 | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 510 | . . 3 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
2 | ndmfv 6379 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
3 | nfunsn 6386 | . . . 4 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
4 | 2, 3 | jaoi 393 | . . 3 ⊢ ((¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})) → (𝐹‘𝐴) = ∅) |
5 | 1, 4 | sylbi 207 | . 2 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹‘𝐴) = ∅) |
6 | 5 | necon1ai 2959 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 {csn 4321 dom cdm 5266 ↾ cres 5268 Fun wfun 6043 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-iota 6012 df-fun 6051 df-fv 6057 |
This theorem is referenced by: fvn0ssdmfun 6513 fvn0fvelrn 6593 umgrnloopv 26200 usgrnloopvALT 26292 afvpcfv0 41732 afvfvn0fveq 41736 afv0nbfvbi 41737 ovn0dmfun 42274 |
Copyright terms: Public domain | W3C validator |