MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqf1o Structured version   Visualization version   GIF version

Theorem fveqf1o 6700
Description: Given a bijection 𝐹, produce another bijection 𝐺 which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
fveqf1o.1 𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))
Assertion
Ref Expression
fveqf1o ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐺:𝐴1-1-onto𝐵 ∧ (𝐺𝐶) = 𝐷))

Proof of Theorem fveqf1o
StepHypRef Expression
1 simp1 1130 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐹:𝐴1-1-onto𝐵)
2 f1oi 6315 . . . . . . . 8 ( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})):(𝐴 ∖ {𝐶, (𝐹𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (𝐹𝐷)})
32a1i 11 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})):(𝐴 ∖ {𝐶, (𝐹𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (𝐹𝐷)}))
4 simp2 1131 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐶𝐴)
5 f1ocnv 6290 . . . . . . . . . 10 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
6 f1of 6278 . . . . . . . . . 10 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
71, 5, 63syl 18 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐹:𝐵𝐴)
8 simp3 1132 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐷𝐵)
97, 8ffvelrnd 6503 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐹𝐷) ∈ 𝐴)
10 f1oprswap 6321 . . . . . . . 8 ((𝐶𝐴 ∧ (𝐹𝐷) ∈ 𝐴) → {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}:{𝐶, (𝐹𝐷)}–1-1-onto→{𝐶, (𝐹𝐷)})
114, 9, 10syl2anc 573 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}:{𝐶, (𝐹𝐷)}–1-1-onto→{𝐶, (𝐹𝐷)})
12 incom 3956 . . . . . . . . 9 ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ({𝐶, (𝐹𝐷)} ∩ (𝐴 ∖ {𝐶, (𝐹𝐷)}))
13 disjdif 4182 . . . . . . . . 9 ({𝐶, (𝐹𝐷)} ∩ (𝐴 ∖ {𝐶, (𝐹𝐷)})) = ∅
1412, 13eqtri 2793 . . . . . . . 8 ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ∅
1514a1i 11 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ∅)
16 f1oun 6297 . . . . . . 7 (((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})):(𝐴 ∖ {𝐶, (𝐹𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (𝐹𝐷)}) ∧ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}:{𝐶, (𝐹𝐷)}–1-1-onto→{𝐶, (𝐹𝐷)}) ∧ (((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ∅ ∧ ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ∅)) → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}))
173, 11, 15, 15, 16syl22anc 1477 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}))
18 uncom 3908 . . . . . . . 8 ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) = ({𝐶, (𝐹𝐷)} ∪ (𝐴 ∖ {𝐶, (𝐹𝐷)}))
19 prssi 4487 . . . . . . . . . 10 ((𝐶𝐴 ∧ (𝐹𝐷) ∈ 𝐴) → {𝐶, (𝐹𝐷)} ⊆ 𝐴)
204, 9, 19syl2anc 573 . . . . . . . . 9 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → {𝐶, (𝐹𝐷)} ⊆ 𝐴)
21 undif 4191 . . . . . . . . 9 ({𝐶, (𝐹𝐷)} ⊆ 𝐴 ↔ ({𝐶, (𝐹𝐷)} ∪ (𝐴 ∖ {𝐶, (𝐹𝐷)})) = 𝐴)
2220, 21sylib 208 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ({𝐶, (𝐹𝐷)} ∪ (𝐴 ∖ {𝐶, (𝐹𝐷)})) = 𝐴)
2318, 22syl5eq 2817 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) = 𝐴)
24 f1oeq2 6269 . . . . . . 7 (((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) = 𝐴 → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})))
2523, 24syl 17 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)})))
2617, 25mpbid 222 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}))
27 f1oeq3 6270 . . . . . 6 (((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) = 𝐴 → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto𝐴))
2823, 27syl 17 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto→((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∪ {𝐶, (𝐹𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto𝐴))
2926, 28mpbid 222 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto𝐴)
30 f1oco 6300 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})):𝐴1-1-onto𝐵)
311, 29, 30syl2anc 573 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})):𝐴1-1-onto𝐵)
32 fveqf1o.1 . . . 4 𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))
33 f1oeq1 6268 . . . 4 (𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})) → (𝐺:𝐴1-1-onto𝐵 ↔ (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})):𝐴1-1-onto𝐵))
3432, 33ax-mp 5 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})):𝐴1-1-onto𝐵)
3531, 34sylibr 224 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐺:𝐴1-1-onto𝐵)
3632fveq1i 6333 . . . 4 (𝐺𝐶) = ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))‘𝐶)
37 f1of 6278 . . . . . 6 ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴1-1-onto𝐴 → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴𝐴)
3829, 37syl 17 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴𝐴)
39 fvco3 6417 . . . . 5 (((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}):𝐴𝐴𝐶𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))‘𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶)))
4038, 4, 39syl2anc 573 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))‘𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶)))
4136, 40syl5eq 2817 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐺𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶)))
42 fnresi 6148 . . . . . . . 8 ( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) Fn (𝐴 ∖ {𝐶, (𝐹𝐷)})
4342a1i 11 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) Fn (𝐴 ∖ {𝐶, (𝐹𝐷)}))
44 f1ofn 6279 . . . . . . . 8 ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}:{𝐶, (𝐹𝐷)}–1-1-onto→{𝐶, (𝐹𝐷)} → {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩} Fn {𝐶, (𝐹𝐷)})
4511, 44syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩} Fn {𝐶, (𝐹𝐷)})
46 prid1g 4431 . . . . . . . 8 (𝐶𝐴𝐶 ∈ {𝐶, (𝐹𝐷)})
474, 46syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → 𝐶 ∈ {𝐶, (𝐹𝐷)})
48 fvun2 6412 . . . . . . 7 ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) Fn (𝐴 ∖ {𝐶, (𝐹𝐷)}) ∧ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩} Fn {𝐶, (𝐹𝐷)} ∧ (((𝐴 ∖ {𝐶, (𝐹𝐷)}) ∩ {𝐶, (𝐹𝐷)}) = ∅ ∧ 𝐶 ∈ {𝐶, (𝐹𝐷)})) → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶) = ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}‘𝐶))
4943, 45, 15, 47, 48syl112anc 1480 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶) = ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}‘𝐶))
50 f1ofun 6280 . . . . . . . 8 ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}:{𝐶, (𝐹𝐷)}–1-1-onto→{𝐶, (𝐹𝐷)} → Fun {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})
5111, 50syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → Fun {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})
52 opex 5060 . . . . . . . 8 𝐶, (𝐹𝐷)⟩ ∈ V
5352prid1 4433 . . . . . . 7 𝐶, (𝐹𝐷)⟩ ∈ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}
54 funopfv 6376 . . . . . . 7 (Fun {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩} → (⟨𝐶, (𝐹𝐷)⟩ ∈ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩} → ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}‘𝐶) = (𝐹𝐷)))
5551, 53, 54mpisyl 21 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ({⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}‘𝐶) = (𝐹𝐷))
5649, 55eqtrd 2805 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶) = (𝐹𝐷))
5756fveq2d 6336 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶)) = (𝐹‘(𝐹𝐷)))
58 f1ocnvfv2 6676 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
591, 8, 58syl2anc 573 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
6057, 59eqtrd 2805 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩})‘𝐶)) = 𝐷)
6141, 60eqtrd 2805 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐺𝐶) = 𝐷)
6235, 61jca 501 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐺:𝐴1-1-onto𝐵 ∧ (𝐺𝐶) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  {cpr 4318  cop 4322   I cid 5156  ccnv 5248  cres 5251  ccom 5253  Fun wfun 6025   Fn wfn 6026  wf 6027  1-1-ontowf1o 6030  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039
This theorem is referenced by:  infxpenc2  9045
  Copyright terms: Public domain W3C validator