![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelrnb | Structured version Visualization version GIF version |
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
fvelrnb | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6281 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
2 | 1 | eleq2d 2716 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)})) |
3 | fvex 6239 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2718 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐵 → ((𝐹‘𝑥) ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbii 223 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐵 → 𝐵 ∈ V) |
6 | 5 | rexlimivw 3058 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 → 𝐵 ∈ V) |
7 | eqeq1 2655 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹‘𝑥) ↔ 𝐵 = (𝐹‘𝑥))) | |
8 | eqcom 2658 | . . . . 5 ⊢ (𝐵 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝐵) | |
9 | 7, 8 | syl6bb 276 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝐵)) |
10 | 9 | rexbidv 3081 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
11 | 6, 10 | elab3 3390 | . 2 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 2, 11 | syl6bb 276 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 ran crn 5144 Fn wfn 5921 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: foelrni 6283 chfnrn 6368 rexrn 6401 ralrn 6402 elrnrexdmb 6404 ffnfv 6428 elunirn 6549 isoini 6628 canth 6648 reldm 7263 seqomlem2 7591 fipreima 8313 ordiso2 8461 inf0 8556 inf3lem6 8568 noinfep 8595 cantnflem4 8627 infenaleph 8952 isinfcard 8953 dfac5 8989 ackbij1 9098 sornom 9137 fin23lem16 9195 fin23lem21 9199 isf32lem2 9214 fin1a2lem5 9264 itunitc 9281 axdc3lem2 9311 zorn2lem4 9359 cfpwsdom 9444 peano2nn 11070 uzn0 11741 om2uzrani 12791 uzrdgfni 12797 uzin2 14128 unbenlem 15659 vdwlem6 15737 0ram 15771 imasmnd2 17374 imasgrp2 17577 pmtrfrn 17924 pgpssslw 18075 efgsfo 18198 efgrelexlemb 18209 gexex 18302 imasring 18665 mpfind 19584 mpfpf1 19763 pf1mpf 19764 lindfrn 20208 2ndcomap 21309 kgenidm 21398 kqreglem1 21592 zfbas 21747 rnelfmlem 21803 rnelfm 21804 fmfnfmlem2 21806 ovolctb 23304 ovolicc2 23336 mbfinf 23477 dvivth 23818 dvne0 23819 aannenlem3 24130 reeff1o 24246 uhgr2edg 26145 ushgredgedg 26166 ushgredgedgloop 26168 2pthon3v 26908 rnbra 29094 cnvbraval 29097 pjssdif1i 29162 dfpjop 29169 elpjrn 29177 foresf1o 29469 fsumiunle 29703 esumfsup 30260 esumiun 30284 msrid 31568 tailfb 32497 indexdom 33659 cdleme50rnlem 36149 diaelrnN 36651 diaintclN 36664 cdlemm10N 36724 dibintclN 36773 dihglb2 36948 dihintcl 36950 lcfrlem9 37156 mapd1o 37254 hdmaprnlem11N 37469 hgmaprnlem4N 37508 nacsfix 37592 fvelrnbf 39491 cncmpmax 39505 climinf2lem 40256 stoweidlem27 40562 stoweidlem31 40566 stoweidlem48 40583 stoweidlem59 40594 stirlinglem13 40621 fourierdlem12 40654 fourierdlem41 40683 fourierdlem42 40684 fourierdlem46 40687 fourierdlem48 40689 fourierdlem49 40690 fourierdlem70 40711 fourierdlem71 40712 fourierdlem74 40715 fourierdlem75 40716 fourierdlem102 40743 fourierdlem103 40744 fourierdlem104 40745 fourierdlem114 40755 sge0tsms 40915 sge0sup 40926 sge0le 40942 sge0isum 40962 sge0seq 40981 nnfoctbdjlem 40990 meadjiunlem 41000 iccpartrn 41691 iccpartnel 41699 fmtnorn 41771 |
Copyright terms: Public domain | W3C validator |