![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version |
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 5620 | . . . 4 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
2 | 1 | ibi 256 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
3 | funbrfv 6387 | . . . 4 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
4 | 3 | reximdv 3146 | . . 3 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
5 | 2, 4 | syl5 34 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
6 | 5 | imp 444 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∃wrex 3043 class class class wbr 4796 “ cima 5261 Fun wfun 6035 ‘cfv 6041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fv 6049 |
This theorem is referenced by: ssimaex 6417 isofrlem 6745 tz7.49 7701 rankwflemb 8821 tcrank 8912 zorn2lem5 9506 zorn2lem6 9507 uniimadom 9550 wunr1om 9725 tskr1om 9773 tskr1om2 9774 grur1 9826 iscldtop 21093 kqfvima 21727 fmfnfmlem4 21954 fmfnfm 21955 qustgpopn 22116 c1liplem1 23950 plypf1 24159 ltgseg 25682 axcontlem9 26043 uhgrspan1 26386 pthdlem2lem 26865 htthlem 28075 xrofsup 29834 fimaproj 30201 txomap 30202 qtophaus 30204 erdszelem7 31478 erdszelem8 31479 mrsub0 31712 mrsubccat 31714 mrsubcn 31715 msubrn 31725 mthmblem 31776 ivthALT 32628 ftc2nc 33799 heibor1lem 33913 ismrc 37758 funimassd 39922 icccncfext 40595 dirkercncflem2 40816 smfpimbor1lem1 41503 |
Copyright terms: Public domain | W3C validator |