![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveecn | Structured version Visualization version GIF version |
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
fveecn | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveere 26001 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | |
2 | 1 | recnd 10269 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 1c1 10138 ...cfz 12532 𝔼cee 25988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-map 8010 df-ee 25991 |
This theorem is referenced by: brbtwn2 26005 colinearalglem2 26007 colinearalg 26010 axcgrrflx 26014 axcgrid 26016 axsegconlem1 26017 ax5seglem1 26028 ax5seglem2 26029 ax5seglem4 26032 ax5seglem5 26033 ax5seglem6 26034 ax5seglem9 26037 axbtwnid 26039 axpasch 26041 axlowdimlem16 26057 axlowdimlem17 26058 axeuclidlem 26062 axeuclid 26063 axcontlem2 26065 axcontlem4 26067 axcontlem7 26070 axcontlem8 26071 |
Copyright terms: Public domain | W3C validator |