![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvcoe1 | Structured version Visualization version GIF version |
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
fvcoe1 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 7730 | . . . . 5 ⊢ 1𝑜 = {∅} | |
2 | nn0ex 11505 | . . . . 5 ⊢ ℕ0 ∈ V | |
3 | 0ex 4925 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 1, 2, 3 | mapsnconst 8061 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑𝑚 1𝑜) → 𝑋 = (1𝑜 × {(𝑋‘∅)})) |
5 | 4 | adantl 467 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → 𝑋 = (1𝑜 × {(𝑋‘∅)})) |
6 | 5 | fveq2d 6337 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝐹‘𝑋) = (𝐹‘(1𝑜 × {(𝑋‘∅)}))) |
7 | elmapi 8035 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑𝑚 1𝑜) → 𝑋:1𝑜⟶ℕ0) | |
8 | 0lt1o 7742 | . . . 4 ⊢ ∅ ∈ 1𝑜 | |
9 | ffvelrn 6502 | . . . 4 ⊢ ((𝑋:1𝑜⟶ℕ0 ∧ ∅ ∈ 1𝑜) → (𝑋‘∅) ∈ ℕ0) | |
10 | 7, 8, 9 | sylancl 574 | . . 3 ⊢ (𝑋 ∈ (ℕ0 ↑𝑚 1𝑜) → (𝑋‘∅) ∈ ℕ0) |
11 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
12 | 11 | coe1fv 19791 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1𝑜 × {(𝑋‘∅)}))) |
13 | 10, 12 | sylan2 580 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1𝑜 × {(𝑋‘∅)}))) |
14 | 6, 13 | eqtr4d 2808 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∅c0 4063 {csn 4317 × cxp 5248 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 1𝑜c1o 7710 ↑𝑚 cmap 8013 ℕ0cn0 11499 coe1cco1 19763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-map 8015 df-nn 11227 df-n0 11500 df-coe1 19768 |
This theorem is referenced by: coe1mul2 19854 ply1coe 19881 deg1ldg 24072 deg1leb 24075 |
Copyright terms: Public domain | W3C validator |