![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvcod | Structured version Visualization version GIF version |
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvcod.g | ⊢ (𝜑 → Fun 𝐺) |
fvcod.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
fvcod.h | ⊢ 𝐻 = (𝐹 ∘ 𝐺) |
Ref | Expression |
---|---|
fvcod | ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvcod.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐺) | |
2 | 1 | fveq1i 6332 | . . 3 ⊢ (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴)) |
4 | fvcod.g | . . 3 ⊢ (𝜑 → Fun 𝐺) | |
5 | fvcod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
6 | fvco 6415 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
7 | 4, 5, 6 | syl2anc 693 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
8 | 3, 7 | eqtrd 2803 | 1 ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 dom cdm 5248 ∘ ccom 5252 Fun wfun 6024 ‘cfv 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-sbc 3585 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-id 5156 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-fv 6038 |
This theorem is referenced by: subsaliuncllem 41093 |
Copyright terms: Public domain | W3C validator |