![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6079 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
2 | fvco2 6436 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
3 | 1, 2 | sylanb 490 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 dom cdm 5266 ∘ ccom 5270 Fun wfun 6043 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: fin23lem30 9376 hashkf 13333 hashgval 13334 gsumpropd2lem 17494 ofco2 20479 opfv 29778 xppreima 29779 psgnfzto1stlem 30180 smatlem 30193 mdetpmtr1 30219 madjusmdetlem2 30224 madjusmdetlem4 30226 eulerpartlemgvv 30768 eulerpartlemgu 30769 sseqfv2 30786 reprpmtf1o 31034 hgt750lemg 31062 comptiunov2i 38518 choicefi 39909 fvcod 39940 evthiccabs 40239 cncficcgt0 40622 dvsinax 40648 fvvolioof 40727 fvvolicof 40729 stirlinglem14 40825 fourierdlem42 40887 hoicvr 41286 hoi2toco 41345 ovolval3 41385 ovolval4lem1 41387 ovnovollem1 41394 ovnovollem2 41395 |
Copyright terms: Public domain | W3C validator |