MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   GIF version

Theorem fvclss 6485
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2627 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
2 tz6.12i 6201 . . . . . . . . . 10 (𝑦 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
31, 2syl5bi 232 . . . . . . . . 9 (𝑦 ≠ ∅ → (𝑦 = (𝐹𝑥) → 𝑥𝐹𝑦))
43eximdv 1844 . . . . . . . 8 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → ∃𝑥 𝑥𝐹𝑦))
5 vex 3198 . . . . . . . . 9 𝑦 ∈ V
65elrn 5355 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
74, 6syl6ibr 242 . . . . . . 7 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → 𝑦 ∈ ran 𝐹))
87com12 32 . . . . . 6 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹))
98necon1bd 2809 . . . . 5 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 = ∅))
10 velsn 4184 . . . . 5 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10syl6ibr 242 . . . 4 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1211orrd 393 . . 3 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1312ss2abi 3666 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
14 df-un 3572 . 2 (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
1513, 14sseqtr4i 3630 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383   = wceq 1481  wex 1702  wcel 1988  {cab 2606  wne 2791  cun 3565  wss 3567  c0 3907  {csn 4168   class class class wbr 4644  ran crn 5105  cfv 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-cnv 5112  df-dm 5114  df-rn 5115  df-iota 5839  df-fv 5884
This theorem is referenced by:  fvclex  7123
  Copyright terms: Public domain W3C validator